教学方案设计表

课题名称	考马斯亮蓝法测定蛋白质浓度		
学科	生命科学	课程名称	仪器分析实验
适用对象	生物技术和生物工程本科生	教师	俞梅兰

一、教学内容分析

紫外-可见吸收光谱是理论课《仪器分析》课程教学重点,UV 在生命科学中也常叫做蛋白核酸分析仪。采用 UV 进行蛋白定量方法很多,包括常见的 Bradford 法、lowry 法、BCA 法和紫外分光光度法等实验方法。本部分采用"考马斯亮蓝法测定蛋白质浓度"实验与理论教学内容紫外吸收光谱相匹配教学内容,让学生掌握考马斯亮蓝法测实验原理。通过实验让学生了解 UV 的主要构造和基本原理,学习 UV 的基本操作方法,思考不同方法蛋白定量方法不同原理。

二、教学目标

- 1. 学习考马斯亮蓝 G-250 染色法测定蛋白质含量的基本原理和方法。
- 2. 掌握紫外-可见分光光度计 DU-800 的使用方法。
- 3. 通过实验学生初步具有解决相应问题的能力,培养学生分析归纳能力、创新精神和独立工作能力。

三、教学重点和难点

- 1. 教学重点: 考马斯亮蓝法的基本原理和实验操作
- 2. 教学难点: 紫外可见分光光度计 DU-800 的使用

四、教学过程

教学过程	教师活动	学生活动	设计意图及资源准备
课程内容导入	介绍本部分教学内容在《仪器分析》课程中地位, 导入课程,提出学习目标 和重点。	学生教师讲课	紫 外 分 光 光 度 计 DU-800 和可见分光 光度计 1101M
教学互动	教师提问:采用分光光度 测定蛋白质浓度的方法有	学生回忆以前学习的 知识点,回答问题	

	哪几种?		
考马斯亮蓝法基 本原理和实验演 示	讲解考马斯亮蓝法的基本 原理,演示实验,演示过 程中提示学生实验过程中 注意事项。	学生认真听讲,看教 师演示实验	让学生理解考马斯亮 蓝法为什么学 595 纳 米?
仪器基本操作展 示	介绍 DU-800 仪器性能, 并进行基本操作展示	学生认真看教师演示 仪器,在实验过程学 生根据所学知识选择 合适灯源,最大吸收 峰等。	
	教师提出实验要求	学生根据要求动手实 验	

五、学习者特征分析

《仪器分析》课程讲授不同类别仪器的基本原理、仪器结构和实验操作等,学生的知识体系不连贯,内容跳跃,在理论课程讲解过程中觉得枯燥难学,难以应用到试验中。同时,本科生对于大型精密仪器具有很强的好奇心,如果将仪器的原理和操作与基础实验相结合,让学生充分了解仪器分析方法的影响因素,了解仪器分析方法的优势和局限性增强互动性,活跃学生参与积极性,提高了学生分析问题和解决问题的能力。

六、教学评价设计

由于分析仪器大多都比较昂贵,很难购买齐全;仪器精密,维护成本高,教学过程中必须注意教学次序。但不能实验条件限制而阻碍学生实验兴趣,教师应该鼓励学生按自己的知识结构层次和兴趣爱好,探索开放实验教学模式。实验设备台套数少,实验可以采用分组循环进行,全天开放实验室,以时间换效果,由学生主动预约实验,实验老师严格把关。

七、帮助与总结